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Outline

Addressing QCD thermodynamics (Nf = 2)

QCD phase structure
1 Spontaneous chiral symmetry breaking
2 Confinement

Joining the NJL model and the Polyakov loop model

1 Introduction
NJL-model
Polyakov-loop model

2 Implementing cross-talk between the models
NJL-model + Polyakov-loop model ➠ PNJL model
An ansatz beyond mean field theory

3 Numeric results
Equation of state — Comparison with lattice data
The Polyakov loop 〈Φ〉 and its complex conjugate 〈Φ∗〉
The phase diagram (including diquarks)
Isovectorial susceptibilities
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NJL model

LNJL = ψ̄
(

/p − m0
)

ψ − g
(

ψ̄γµλaψ
) (

ψ̄γµλaψ
)

Free quarks

Integrated out gluons

Local colour current interaction

Chiral symmetry

➠ Local SU(3)c
QCD→NJL
−−−−−−→ Global SU(3)c ➠ No confinement in NJL

Spontaneous chiral symmetry breaking

Hartree-Fock approximation (Fierz-transformation: H = 3
4 G)

L = ψ̄
[

/p − m0
]

ψ +
G
2

[

ψ̄ψ
]2

+
H
2

(

ψ̄iγ5τ2λ2Cψ̄T ) (

ψT Ciγ5τ2λ2ψ
)

Bosonization in channels with large 4-quark coupling

ΩMF =
σ2

2G
+

|∆|
2

2H
−

T
2

∑

ωn

∫

d3p

(2π)
3 Tr log

S−1(ωn, ~p)

T

➠ σ = G 〈ψ̄ψ〉 ➠ ∆ = H 〈ψT Ciγ5τ2λ2ψ〉

➠ S−1 =

(

/p − (m0 − σ) + γ0µ ∆γ5τ2λ2

−∆∗γ5τ2λ2 /p − (m0 − σ) − γ0µ

)
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Polyakov loop model

Model for SU(3)c-gauge theory ➠ Confinement
➠ 1st -order ➠ Spontaneous breakdown of Z (3)-center of SU(3)c

Order parameter for de-confinement – Polyakov loop

Polyakov loop Φ(~x) is a normalized time-like Wilson-line

Φ(~x) =
1

Nc
trcL(~x) L(~x) = P exp

{

i
∫ β

0
dτ Aa

4(~x) ta

}

➠ 〈Φ〉 = 0 ⇐⇒ confinement ➠ 〈Φ〉 6= 0 ⇐⇒ deconfinement

Define a Ginzburg-Landau effective potential

U = U(Φ, Φ∗,T ) with Φ =
1

Nc
Tr exp

{

i
Aa

4 ta
T

}

and a ∈ {3,8 }

∫

DΦ

∫

DΦ∗ e−U(Φ, Φ∗,T ) =

∫

DA e−Seff(Φ(A),Φ∗(A),T )

Effective loop coupling ∝ Φ∗Φ ➠ Seff = − 1
2 b2 (T ) Φ∗Φ
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Polyakov loop model adjusted to lattice QCD data
Ansatz for the Polyakov loop potential (K. Fukushima [Fuk04])

U(Φ,Φ∗,T )

T 4 = −
1
2

b2 (T ) Φ∗Φ +
1
4

b4 (T ) log [J(Φ,Φ∗)]

J(Φ,Φ∗) = 1 − 6Φ∗Φ + 4
(

Φ∗3 + Φ3
)

− 3 (Φ∗Φ)
2

b4 (T ) = b4

(

T0

T

)3

b2(T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

Temperature dependent effective coupling strength b2 = b2 (T )

Log-term generated by the integration over the SU(3)c measure
1st-order Transition at T0 = 270 MeV in pure gauge lattice QCD

G. Boyd et. al. [B+96], O. Kaczmarek et. al. [KKPZ02, KZ05]
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Polyakov loop extended NJL (PNJL)

Substitute the Matsubara frequencies ωn by ωn + A4

➠ Formal substitution µ→ µ− iA4 after Matsubara summation
➠ Analogy to the QCD gauge coupling

ΩMF = ΩNJL|µ→µ−iA4
+ U(Φ,Φ∗,T )

From NJL to PNJL

In SU(3)c-gauge theory: Tc = 270 MeV

➠ In NJL: Tc ≈ 177 MeV

TCEP ≈ 38 MeV

➠ In PNJL: Tc ≈ 215 MeV

TCEP ≈ 135 MeV

Lattice: Tc ≈ 202 MeV O. Kaczmarek et. al. [KZ05]

”Confinement” in the PNJL model:

➠ Thermodynamic suppression of free quarks by the Polyakov loop
At 〈Φ〉 = 0 (⇐⇒ ”confinement”) PNJL models a gas with particle
mass m = 3 M ≈ MN
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Constraints imposed by MF approach

The fermion sign problem

Minimal substitution: ωn → ωn + A4

➠ Inverse propagator S−1(µ→ µ− iA4) is not hermitian

➠ The fermion determinant is a complex quantity

➠ Weights are not positive definite ( ➠ ”sign problem”)

Integrating out all fields:

➠ Partition function Z ∈ R despite complex weights

MF: One field configuration carries all weight

➠ Subtle cancellation of imaginary parts in Z is disturbed

? Interpretation of Z and thermodynamic potential Ω

Idea: Do not discard the integral over bosonic field configurations

➠ Conserve the cancellation of imaginary parts in Z and Ω
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Gaussian approximation

A: Truncate the bosonized action Sbos. at 2nd order in the fields

Sbos. ≈ Strunc. =
V
T

(

ω0 + ω1 · ξ +
1
2
ξ · ω2 · ξ

)

B: Treat higher orders as perturbations SI = Sbos. − Strunc.

C: Choose the field configuration to expand about
Maximal convergence of the perturbative series

➠ Expand about the configuration where
˛

˛e−Strunc.

˛

˛ = max.

➠ ∂ Re ΩMF
∂φ

˛

˛

˛

φ∈{σ,∆,φ3,φ8}
= 0 ➠ Self consistency equations

Expansion about the minimum after SSB ➠ Corrections to MF

Diagrams are systematically ordered. . .

1 . . . by the thermodynamic expansion ∝ (T/V )α

2 . . . by the number of source term insertions δβ ,
where δ is defined as δ = −i [ω2]

−1
· ω1
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The pressure and its moments
Pressure and c2, S. R., C. Ratti, W. Weise [RRW07]

The pressure p/T 4

Lattice data:
F. Karsch et. al. [KLP00]

The second moment c2

Lattice data:
C. R. Allton et. al. [A+05]

∆
( p

T 4 (µ)
)

=
p

T 4

∣

∣

∣

T ,µ
−

p
T 4

∣

∣

∣

T ,0
=

∞
∑

p=1

cp(T )
( µ

T

)p
,

⇒ c2 =
1
2!

1
T 2

∂2 p
∂µ2
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The pressure difference and its moments
c4 and c6, S. R., C. Ratti, W. Weise [RRW07]

The fourth moment c4 The sixth moment c6

Lattice data from the Bielefeld-Swansea coll. [A+05]

⇒ c4 =
1
4!

∂4 p
∂µ4 ⇒ c6 =

1
6!

T 2 ∂
6 p
∂µ6
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Expectation values of the Polyakov loop 〈Φ〉 and 〈Φ∗〉

In mean field MF + corrections

〈Φ〉MF = 〈Φ∗〉MF

No split of 〈Φ〉 and 〈Φ∗〉

〈Φ〉 ∈ R and 〈Φ∗〉 ∈ R

〈Φ〉 6= 〈Φ∗〉 at µ 6= 0

➠ Fluctuation effects beyond mean field produce 〈Φ〉 6= 〈Φ∗〉
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The phase diagram
S. R., C. Ratti, W. Weise [RRW07]

No back reaction of fluctuations on SSB included
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The phase diagram (in mean field)
S. R., C. Ratti, W. Weise [RRW07]

The phase diagram is almost unaffected by the corrections

➠ Phase structure is governed by non-perturbative SSB
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Introduction of a non-vanishing pion condensate [ZL06]
Trading the diquark condensate for a pion condensate

LNJL = ψ̄
(

/p + γ0µ̂− m̂0 − iλ̂γ5τ1

)

ψ +
G
2

[

(

ψ̄ψ
)2

+
(

ψ̄iγ5~τψ
)2

]

µ̂ = µ1+ µI σ3 m̂0 = m0 1 λ̂0 = λ 1

no diquark coupling term ➠ pseudoscalar, isovector channel

⇒ HPNJL = −iψ† (~α · ~∇ + γ4 m0 − φ)ψ

+
G
2

[

(

ψ̄ψ
)2

+
(

ψ̄iγ5~τψ
)2

]

+ U (Φ,Φ∗,T )

➠ The thermodynamic potential (Zhang and Liu [ZL06]):

Ω = U (Φ,Φ∗,T ) +
σ2 + π2

2 G
− T

∑

n

∫

d3p

(2π)
3 Tr log

S−1
(

iωn, ~p
)

T

S−1 =

(

(iωn + µ̃+ µI)γ0 − ~γ · ~p − M −iγ5N
−iγ5N (iωn + µ̃− µI)γ0 − ~γ · ~p − M

)

µ̃ = µ− iA4 M = m0 − 2G σ N = λ− 2G π

σ ≃ 〈ψ̄ψ〉 π ≃ 〈ψ̄iγ5τ1ψ〉
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The expansion of the pressure difference in isospin
cI

2, cI
4 and cI

6 — No isospin breaking: λ = 0

The coefficient cI
2

Prelim
inary

The coefficient cI
4 and cI

6

Prelim
inary

Lowest order corrections to MF included
✔ Fluctuations of the q = 0-mode included to lowest order
✘ No fluctutuations from mesonic q 6= 0-modes, yet . . .

Lattice data from the Bielefeld-Swansea coll. [A+05]

cI
2 =

1
2!

1
T 2

∂2 p
∂µ2

I

cI
4 =

1
4!

∂4 p
∂µ2∂µ2

I

cI
6 =

1
6!

T 2 ∂6 p
∂µ4∂µ2

I
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Conclusion

PNJL:
✔ Chiral symmetry breaking
✔ Confinement

Corrections to mean field results
✔ Consistently fixes the fermion sign problem order by order
✘ Base for further investigation on fluctuations

Numeric Results
✔ Astonishing agreement with QCD lattice data
✔ 〈Φ〉 and 〈Φ∗〉 are non-degenerate at µ 6= 0
✔ Corrections to the phase diagram beyond MF are small
✔ Isovectorial susceptibilies from PNJL and lattice

Outlook
✘ Effect of pionic fluctuations (q 6= 0) on isovector susceptibilities
✘ Improving the regularization scheme (Thomas Hell)
✘ 2 + 1 flavors

S.Rößner, T. Hell, C. Ratti, W. Weise Modeling the Phases of QCD in and beyond mean field theory



The end.

Thank you for your attention
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Parameter fixing

NJL parameters

G = 10.08 MeV

Λ = 651 MeV

m0 = 5.5 MeV















⇐⇒















mπ = 140.5 MeV

fπ = 94.0 MeV
∣

∣〈ψ̄ψ〉
∣

∣

1/3
= 251 MeV

Polyakov loop model parameters

a0 = 3.51 a1 = −2.47 a2 = 15.2 b4 = −1.75

SB-limit ∆a1 ≈ 6% ∆a2 ≈ 3% ∆b4 ≈ 2%
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Establishing Feynman rules

2 Separate free and perturbative parts:

S0 = V
T

“

ω0 + ~ωT
1
~ξ + 1

2
~ξT←→ω 2

~ξ
”

Note: Re ω1 = 0, Im ω1 6= 0 for the P-loop parameters φ3,8

SI = V
T

P∞
k=3

1
k!

ωk
~ξk

3 Introduction to the diagrammatic
Graphs produced by the ”free” part

j
=

∂S
∂ξj

j k
=

»

∂2S
∂ξj∂ξk

–−1

”Interaction” graphs

jk

l

= −
∂3S

∂ξj∂ξk∂ξl

j
k

l
m

= −
∂4S

∂ξj∂ξk∂ξl∂ξm

...
...
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Additional Feynman rules
Evaluation of expectation values of arbitrary functions

3 Introduction to the diagrammatic (cont’d)
Graphs needed to evaluate 〈f (ξ)〉 ➠ Include exactly one circle

j
=

∂f
∂ξj

j k
=

∂2f
∂ξj∂ξk

jk

l

=
∂3f

∂ξj∂ξk∂ξl

j
k

l
m

=
∂4f

∂ξj∂ξk∂ξl∂ξm

...
...

Evaluation of 〈g(ξ)2〉 − 〈g(ξ)〉2 ➠ Include exactly two circles
➠ Split graphs above into two parts, i. e. f −→ g2

g2(θ)
˛

˛

˛

θ=θMF

= g g

∂θ g2(θ)
˛

˛

˛

θ=θMF

= 2g g(1)

∂
2
θ g2(θ)

˛

˛

˛

θ=θMF

= 2 g g(2) + 2 g(1) g(1)
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Formal ordering of the perturbative terms
1 Thermodynamic expansion: α counts powers in T

V
α(S) = −1 and α(Ω) = 0

2 Source terms: β counts powers in
∑

k

[

∂2S
∂ξj∂ξk

]−1
∂S
∂ξk

Orders evaluated in the numeric calculations: α = 0 and β = 0, 1

Fractions give multiplicity factors

Ω = ΩMF −
1
2

T
V

= ΩMF −
1
2

(

∂ΩMF

∂θ

)T [

∂2ΩMF

∂θ2

]−1
∂ΩMF

∂θ

∣

∣

∣

∣

∣

θ=θMF

〈f 〉 = f (θMF) + = f (θMF) +

(

∂ΩMF

∂θ

)T [

∂2ΩMF

∂θ2

]−1
∂f
∂θ

∣

∣

∣

∣

∣

θ=θMF

〈∆g2〉 =
1
2
× 2 +

1
2
× 4 +

1
2
× 2

Lowest order in α completely cancels ➠ Susceptibilities ∝ T
V

Additional factors from differentiation of g2(ξ) (cutting one vertex
into two parts)
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The critical endpoint and its quark mass dependence
An analysis in mean field approximation

Diquark phase stabilizes the critical point at high temperatures
➠ Tc is stabilized at m0 ' 1 MeV
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Influence of the loop 〈Φ〉 on the diquark gap ∆
An analysis in mean field approximation (S. R., C. Ratti, W. Weise [RRW07])

The diquark gap is enlarged for 〈Φ〉 small (confinement)

〈Φ〉 = 1 (deconfinement) coincides with NJL case

Sensitive interplay of pairing quarks (at the Fermi surface) and
the thermodynamic suppression of quarks by the loop 〈Φ〉 in the
center of the Fermi sphere (E − µ / T )
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The temperature dependence of the chiral condensate
A comparison with lattice data in nf = 2

Lattice data in nf = 2: Boyd et. al. [B+95]

Solid red line: PNJL-model calculation (S. R., C. Ratti, W. Weise
[RRW07])
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The temperature dependence of the Polyakov loop
Pure gauge theory in comparison with nf = 2

Lattice data: O. Kaczmarek et. al. [KZ05]
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The phase diagram
S. R., C. Ratti, W. Weise [RRW07]
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The phase diagram (in mean field)
S. R., C. Ratti, W. Weise [RRW07]
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Non-vanishing isovector chemical potential
➠ No explicit isospin symmetry breaking term: λ = 0 (see also Zhang and Liu [ZL06])

Phase diagram in the
(T ,µI)-plane

Prelim
inary

The onset of the pion
condensation

Prelim
inary

0 0.1 0.2 0.3 0.4 0.5
Μ

I
� GeV

0

0.2

0.4

0.6

0.8

1
T = 0

T = 180 MeV

T = 210 MeV

Σ
����������
Σ0

Π
����������
Σ0

ReXF\

At low µI ➠ 2nd order phase transition

At large µI ➠ 1st order transition

Critical point: µI = 0.395 GeV, T = 0.197 GeV, (µ = 0)

! Considering the phases in (T , µ, µI) with ∆, π 6= 0 is difficult

? Is there a tri-critical point, where ∆- and π-phases meet?
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A three dimensional impression of pion condensation
➠ No explicit isospin symmetry breaking term: λ = 0

Prelim
inary

1st-order lines in red and green 2nd-order transition in blue
➠ No connection of the 1st-order transition at large µ and µI
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